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Abstract. We analytically evaluate charge and spin density response functions of the clean two-dimensional
electron gas with Rashba spin-orbit coupling at finite momenta and frequencies. On the basis of our exact
expressions we discuss the accuracy of the long-wavelength and the quasiclassical approximations. We also
derive the static limit of spin susceptibilities and demonstrate, in particular, how the Kohn-like anoma-
lies in their derivatives are related to the spin-orbit modification of the Ruderman-Kittel-Kasuya-Yosida
interaction. Taking into account screening and exchange effects of the Coulomb interaction, we describe
the collective charge and spin density excitation modes which appear to be coupled due to nonvanishing
spin-charge response function.

PACS. 71.70.Ej Spin-orbit coupling – 73.20.Mf Collective excitations (including excitons, polarons, plas-
mons and other charge-density excitations) – 73.21.-b Electron states and collective excitations in multi-
layers, quantum wells, mesoscopic, and nanoscale systems

1 Introduction

One of the working principles of semiconductor spintron-
ics [1,2] is based on the idea to exploit spin-orbit (SO)
coupling for a manipulation of an electron’s spin by means
of electric fields. The SO coupling of the Rashba type [3]
arises in a two-dimensional electron gas (2DEG) at semi-
conductor heterojunction due to the quantum well asym-
metry in the perpendicular direction, and the strength αR

of this coupling can be tuned by a gate voltage [4,5].
A theoretical description of SO-related phenomena in

the 2DEG is provided by coupled transport equations
for charge and spin components of the distribution func-
tion [6–10]. In the regime of a linear response to external
fields these equations appear to be intimately linked to the
density response functions such as charge and spin suscep-
tibilities and – more peculiar – spin-charge response func-
tions. In the presence of impurity scattering all of these
functions have been previously evaluated in the quasiclas-
sical approximation in the both diffusive [8] (q � �

vF τ )
and non-diffusive [11] ( �

vF τ � q � kF ) regimes, where q
is a momentum transfer, kF and vF are Fermi momentum
and Fermi velocity, and τ is an elastic scattering time.

Recently it has been also remarked [12,11] that the
quasiclassical results for the Rashba system are validated
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only in the presence of a finite amount of disorder such
that τ−1 � m∗α2

R, where m∗ is an effective electron’s
mass. Therefore, they cannot be straightforwardly applied
in the extreme collisionless limit τ → ∞ even at small q �
kF , and the response functions of the clean 2DEG with
Rashba SO coupling require a more refine consideration
at finite values of q and frequency ω.

Various response functions in the clean case τ → ∞
are most easily evaluated in the long-wavelength limit
q → 0 [6,13–16]. On the other hand, the knowledge of
the dynamic response functions at finite q enables one to
find dispersions of the collective charge and spin density
excitations [17–23] occurring in the presence of electron-
electron interaction. In particular, in reference [23] the
polarization operator, or the charge susceptibility, of the
system in question has been calculated analytically at ar-
bitrary momenta and frequencies, and the SO-induced at-
tenuation of the charge density mode (plasmon) has been
quantitatively described within the random phase approx-
imation (RPA).

In this paper we analytically evaluate (Sect. 3) the
other density response functions following the computa-
tional scheme elaborated in reference [23]. In Section 4
we derive the static limit of the spin susceptibilities, and
observe an occurrence of the Kohn-like anomalies [24] in
their derivatives. We demonstrate how they are related to
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the SO modification [25] of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [26–28] between two mag-
netic impurities. In Section 5 we compare our expres-
sions for the dynamic response functions with the results
of the long-wavelength and the quasiclassical approxima-
tions, and make conclusions about applicability ranges of
the latter. Finally, in Section 6 we revisit the problem of
the collective charge and spin density excitations treat-
ing electron-electron interaction in terms of the Hubbard
approximation [29], i.e. our consideration extends beyond
the RPA scheme. We demonstrate that the charge and
the spin components are coupled in the obtained collec-
tive modes, which is a consequence of a simultaneous ac-
count of the non-zero spin-charge response function and
the exchange vertex corrections.

2 Basic definitions

Let us consider the 2DEG with SO coupling of the Rashba
type [3] which is described by the single-particle Hamilto-
nian

Hk =
k2

2m∗ + αRk h
R
k , (1)

where hR
k = σx sinφk − σy cosφk is the spin-angular part

of the Rashba spin-orbit coupling term, and we use the
units such that � = 1.

The spectrum of (1) is split into two subbands,

ε±k =
k2

2m∗ ± αRk, (2)

the corresponding eigenstates being

ψk+ =
1√
2

(
1

−ieiφk

)
, ψk− =

1√
2

(−ie−iφk

1

)
. (3)

The matrix Uk diagonalizing the initial Hamiltonian (1)
as well as hR

k , i.e. σz = U†
kh

R
kUk, is then given by

Uk = (ψk+;ψk−) =
1√
2
[1 − iσx cosφk − iσy sinφk]. (4)

It is also convenient to introduce the projectors onto the
eigenstates (3),

Pk± = ψk± ⊗ ψ†
k± ≡ 1 ± hR

k

2
, (5)

which allow us, for example, to spectrally decompose the
Hamiltonian Hk =

∑
µ=± ε

µ
kPkµ as well as the (retarded)

Green’s function

Gret
kε =

∑
µ=±

Pkµ

ε+ i0 − εµk
. (6)

A linear response ρα
qω of the charge density (α = 0) and

the spin densities (α = x, y, z) to an external spatially in-
homogeneous and nonstationary perturbation V β

qω, which
consists of a scalar potential (β = 0) and a magnetic field

(β = x, y, z), is usually determined in the framework of the
Kubo formalism [29]. Applying the standard technique of
the linear response theory and using for convenience the
representation (6), one can establish an expression for the
(retarded) density-density response functions,

χαβ
qω =

∑
µ,µ′=±

∫
d2k

(2π)2
nF (εµk) − nF (εµ

′
k+q)

ω + i0 + εµk − εµ
′

k+q

Fαβ
k,k+q;µ,µ′,

(7)
where

Fαβ
k,k+q;µ,µ′ = Tr[Pkµσ

αPk+q,µ′σβ ] (8)

are the overlap functions; nF denotes the Fermi distribu-
tion, and σ0 ≡ 1.

In the explicit form Fαβ
k,k+q;µ,µ′ are listed in Ap-

pendix B of reference [11]. Here we quote their symme-
try property, which can be directly established from the
definition (8):

Fαβ
k,k+q;µ,µ′ = sFαβ

−k−q,−k;µ′,µ, (9)

where s = 1 for the charge-charge and spin-spin compo-
nents, and s = −1 for the spin-charge components.

The expression (7) includes definitions of a polariza-
tion operator (α, β = 0), spin susceptibilities (α, β =
x, y, z) as well as of spin-charge response functions (α = 0
and β = x, y, z, or vice versa). In the presence of SO cou-
pling the latter functions do not vanish, and their study
represents an especial interest.

We note that the expression (7) can be alternatively
found in terms of the equations of motion for the local
charge and spin densities (see Appendix A for details). A
matrix formulation of this approach provides a convenient
tool for an account of screening and exchange effects in
presence of electron-electron interaction. In more detail
this will be discussed in Section 6.

3 Evaluation of χαβ

The functions (7) have been previously treated at finite q
in terms of different approximations. The most typical of
them are: 1) the small-q (long-wavelength) formal expan-
sion of the whole integrand (see, e.g., Refs. [6,13]); and 2)
the quasiclassical approximation (see, e.g., reference [17])
which is usually performed in the quantum kinetic equa-
tion approach.

In reference [23] the polarization operator χ00 in the
clean limit has been evaluated beyond these approxima-
tions, and the obtained result has been used for an esti-
mation of the accuracy of the long-wavelength expansion.
In particular, the latter has been shown to be applicable
in the limited range of the very small q � k2

R/kF , where
kF =

√
2m∗εF + k2

R and kR = m∗αR is the Rashba mo-
mentum splitting.

As for the quasiclassical approximation, it has been
argued in reference [11] that its application in the pres-
ence of SO coupling is validated at the finite values of the
disorder broadening τ−1 � k2

R/m
∗, which smoothens the
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divergences of the quasiclassical result near the boundaries
of the SO-induced (intersubband) particle-hole excitation
region in the (q, ω)-plane. One still might hope that the
quasiclassical approximation is trustful in the extreme col-
lisionless limit τ → ∞, provided one does not come too
close to the boundaries in question. For this reason we are
going to revisit its accuracy in the context of our present
calculations.

It also remains unclear how the two above mentioned
approximations are related to each other in the clean limit.
Both of them are elaborated for small values of q, but
seem to give different results even at q → 0. For exam-
ple, an application of the long-wavelength expansion to
the optical conductivity yields a box-like function [13,14]
which is finite at frequencies 2αRkF − 2m∗α2

R < ω <
2αRkF +2m∗α2

R, while in the quasiclassical approximation
the width of this frequency window cannot be resolved at
all.

In this section we are going to evaluate the func-
tions (7) without making any kind of approximations. We
will neatly follow the computational scheme elaborated
in reference [23] for χ00. Thus, we will derive analytic ex-
pressions for the other response functions and discuss their
limiting behavior in the subsequent sections.

We start from the observation that, due to the mo-
mentum space isotropy of the spectrum (2), the response
functions (7) can be represented in the form

χαβ
qω =

∑
µ,λ=±

χαβ,µ
qω,λ, (10)

χαβ,µ
qω,λ =

∫
d2k

(2π)2
nF (εµk)λ

1−s
2 (11)

×
[

Fαβ
k,k+q;µ,µ

εµk − εµk+q + λ(ω + i0)
+

Fαβ
k,k+q;µ,−µ

εµk − ε−µ
k+q + λ(ω + i0)

]
,

where the factor λ
1−s
2 originates from the property (9). It

is convenient to choose the basis in the momentum space
such that q is aligned with x-direction. Then the matrix χ
becomes sparse, the non-vanishing terms being χ00, χxx,
χyy, χzz , χ0y = χy0, and χzx = −χxz. Introducing x =
cos(φk − φq) ≡ cosφ, we obtain the following expressions
at zero temperature
(
χ00,µ

qω,λ

χzz,µ
qω,λ

)
=

1
8π2

∫ kF −µkR

0

kdk

∫ 2π

0

dφ

×
[

1 ± k+qx
|k+q|

εµk − εµk+q + λ(ω + i0)
+

1 ∓ k+qx
|k+q|

εµk − ε−µ
k+q + λ(ω + i0)

]
,

(12)

(
χyy,µ

qω,λ

χxx,µ
qω,λ

)
=

1
8π2

∫ kF −µkR

0

kdk

∫ 2π

0

dφ

×
⎡
⎣ 1 ± k(2x2−1)+qx

|k+q|
εµk − εµk+q + λ(ω + i0)

+
1 ∓ k(2x2−1)+qx

|k+q|
εµk − ε−µ

k+q + λ(ω + i0)

⎤
⎦ ,

(13)

(
χ0y,µ

qω,λ

iχzx,µ
qω,λ

)
=
µ(−λ)

1±1
2

8π2

∫ kF −µkR

0

kdk

∫ 2π

0

dφ

×
[

x± q+kx
|k+q|

εµk − εµk+q + λ(ω + i0)
+

x∓ q+kx
|k+q|

εµk − ε−µ
k+q + λ(ω + i0)

]
.

(14)

Note that the components of χ in the arbitrary basis can
be recovered by an orthogonal rotation in the x− y plane
(see Appendix B of Ref. [11]).

After simple algebra we eliminate the odd powers of
|k+q| in equations (12–14). It means that the correspond-
ing integrands happen to be rational functions of k and
cosφ. Let us also note the identity

χxx + χyy = χ00 + χzz , (15)

which allows us to express, say, χxx in terms of the other
diagonal components. There remain, in fact, only five inde-
pendent functions χ(j) = {χ00, χ0y, χyy, χzz, iχzx}, which
can be conveniently labeled by the index j = 1, . . . , 5. Like
in reference [23], we also introduce the index i = 1, 2, 3, 4
which denotes different combinations of {µ, λ} = {−,+},
{+,+}, {−,−}, {+,−}, respectively.

Defining the dimensionless units y = kR/kF , z =
q/2kF , v = k/kF , and w = m∗ω/2k2

F , we cast (12–14)
into the form

−1
ν

Imχ(j)
i =

∫ 1−µy

0

vg
(j)
i (v, z, w, y)dv, (16)

−1
ν
Reχ(j)

i = f̌
(j)
i +

∫ 1−µy

0

vf
(j)
i (v, z, w, y)dv, (17)

where ν ≡ ν2D = m∗
2π is the density of states in 2DEG

per each spin component. The functions g(j)
i and f (j)

i are
given by

g
(j)
i =

λC
(j)
i

2

∫ 2π

0

dφ sign(2vzx− µyv + 2(z2 − λw))

×(x+ δ
(j)
i ) δ(x2 + βix+ γi), (18)

f
(j)
i =

C
(j)
i

2π

∫ 2π

0

dφ
x+ δ

(j)
i

x2 + βix+ γi
, (19)

where the coefficients

βi =
2(z2 − λw) − µy(v + µy)

vz
, (20)

γi =
(z2 − λw)2 − µyv(z2 − λw) − z2y2

v2z2
, (21)

are the same for each j, and δ(. . .) in (18) denotes the
Dirac delta function. The difference between the response
functions χ(j) appears only in the form of the coefficients
f̌

(j)
i , C(j)

i , and δ
(j)
i , which are listed in Appendix B for

all j’s.
We note that the real part of χ(j) can be represented

as a sum

Reχ(j) = χ̌(j) + Reχ(j),I + Reχ(j),II , (22)
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where the term χ̌(j) = −ν∑
i f̌

(j)
i is nonzero only for j = 3

and j = 5 [see Eq. (111)]. The terms Reχ(j),I and Reχ(j),II

are obtained by integrating the functions
∑

i vf
(j),I
i and∑

i vf
(j),II
i , where f (j),I

i = f
(j)
i Θ(β2

i − 4γi) and f
(j),II
i =

f
(j)
i Θ(4γi − β2

i ).

Performing angular integration and a subsequent chan-
ge of the variable v → τ(v) according to equation (34)
of reference [23], we obtain expressions for Imχ(j) and
Reχ(j),I in the form of χ(1) found previously,

−1
ν

Imχ(j) =
∑

σ,µ=±
σ

∫ τσ+(µ)

τσ+(y)

dτL(j)+(τ)

+Θ(1 − 4w)
∑
µ=±

∫ τ−−(µ)

τ+−(µ)

dτL(j)−(τ) (23)

+ 2Θ(y2 − 4w)
∫ τ+−(y)

τ−−(y)

dτL(j)−(τ),

and

−1
ν

Reχ(j),I =
∑

σ,µ=±

∫ τσ+(µ)

τσ+(y)

dτR(j)+(τ)

+Θ(1 − 4w)
∑

σ,µ=±

∫ τσ−(µ)

−µτ++(0)

dτR(j)−(τ)

(24)

+ 2Θ(y2 − 4w)
∑
σ=±

∫ τ−+(0)

τσ−(y)

dτR(j)−(τ),

where

τ1,2 = ±w/z, τ3,4 = −y ± z, (25)

τσλ(x) =
1
2

[
−x+ σ

√
x2 + 4λw

]
, (26)

L(j)±(τ) = L(j)(τ) sign(τ2 + yτ ± w), (27)

R(j)±(τ) = R(j)(τ) sign(τz ∓ w(τ + y)/z). (28)

In the representation (23–24) the actual integration
limits are universal for all response function. The differ-
ence appears only in the form of the integrands

L(j)(τ) = Q(j)(τ)
Θ (P (τ))√

P (τ)
, (29)

R(j)(τ) = Q(j)(τ)
Θ (−P (τ))√−P (τ)

, (30)

P (τ) =
4∏

k=1

(τ − τk), (31)

which are specified for each response function by

Q(1)(τ) =
1
2z

(τ − τ3)(τ − τ4), (32)

Q(2)(τ) = − w

zτ
Q(1)(τ), (33)

Q(3)(τ) =
w2

z2τ2
Q(1)(τ), (34)

Q(4)(τ) =
z

2τ2
(τ − τ1)(τ − τ2), (35)

Q(5)(τ) =
τ + y

z
Q(4)(τ). (36)

Interestingly, for the function χxx = χ00 − χyy + χzz one
would obtain the term

Q(1)(τ) −Q(3)(τ) +Q(4)(τ) =
(τ + y)2

z2
Q(4)(τ), (37)

which is anticipated after comparison of equations (35)
and (36) with (32–34).

Let us make several comments about the obtained re-
sults (23) and (24).

1) First of all, note that the overall sign in the second
line of (23) differs from its counterpart in the correspond-
ing equation (35) of reference [23]. We use the present
opportunity to correct the misprint in the previously de-
rived expression. Fortunately, it did not affect any other
result of reference [23].

2) The actual intervals of integration in equation (23)
are explicitly written down in equations (123–126). None
of them contains the point τ = 0, which means that one
should not worry about the convergence of integrals over
L(3,4,5)(τ) ∼ 1/τ2 near this point.

3) The explicit analytic relations for Imχ(j) in terms of
elliptic functions [30] can be found for all j’s in the same
fashion as it has been done before for χ(1) [see Appendix C
of reference [23]].

4) Some of the actual integration intervals in equa-
tion (24) do contain the point τ = 0, which means that
the corresponding integrals

∫
dτR(3,4,5)(τ) are divergent

in its vicinity. However, the whole expression equation (24)
is convergent and well-defined, since the singularities ex-
actly cancel each other. In order to make equation (24)
practically useful, one has to substitute

∫
dτR(j)(τ) by

the corresponding difference of primitives, which can be
also found in terms of elliptic functions.

5) Equation (24) contains only the contribution
Reχ(j),I to the full function Reχ(j). The contribution χ̌(j)

is quoted in (111), and it remains to calculate the contri-
bution Reχ(j),II . Making a complex change of variables
τ = 1

2 [−µ(v + µy) + i
√

4w − (v + µy)2] (cf. Eq. (34) of
reference [23]) one can as well find Reχ(j),II in the ana-
lytic form which would involve the same integrand R(j)(τ)
and a path of integration lying in the complex τ -plane.
Omitting technical details of this evaluation, we present
the explicit expressions for Reχ(j),I + Reχ(j),II in equa-
tions (129–132).
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4 Static limit

In order to find a static limit of χαβ one should consider
with caution equations (129) and (132) at w → 0. One
can then find

− ν−1 lim
w→0

χ00 = 2 +
π

2
Θ(y − |z − 1|) sinψ

−
∑
µ=±

Θ(z − (1 − µy)) (µψµ sinψ + cosψµ + 2lµ cosψ)

−2Θ(z − 1) cosψ arccoshz, (38)

− ν−1 lim
w→0

χzz = 2 +
2

cosψ

∑
µ=±

Θ(z − (1 − µy))lµ

+
2Θ(z − 1)

cosψ

(
arccoshz −

√
1 − (1/z)2

)
, (39)

− ν−1 lim
w→0

χyy = 2 − 2Θ(z − 1) cosψ
√

1 − (1/z)2, (40)

− iν−1 lim
w→0

χzx =
π

2
Θ(y − |z − 1|)

−
∑
µ=±

Θ(z − (1 − µy)) (µψµ − 2lµ tanψ)

+2Θ(z − 1) tanψ
(
arccoshz −

√
1 − (1/z)2

)
, (41)

where sinψ = y/z (for y < z), sinψµ = (1−µy)/z (for 1−
µy < z; note that this notation differs from its counterpart
in reference [23] by µ→ −µ), and

lµ = lµ(z) = ln
1 + z sin(ψµ + µψ)

2
√

2z cos 1
2ψµ cos 1

2ψ
. (42)

The static limit of χxx can be found from the identity (15).
The off-diagonal spin-charge term χ0y identically vanishes
in this limit, which means a decoupling of charge and spin
components at zero frequency.

On the basis of the derived expressions (38–41) one
can observe that for z ≤ 1 − y all diagonal terms are
equal to χαα = −2ν, while their large-z asymptotes
are χαα ≈ −ν 1+y2

z2 . The off-diagonal spin-spin term χzx

equals zero at z ≤ 1−y, and χzx ≈ 2iνy
z3

(
1 + 2y2

3

)
at large

z � 1. The behavior of all components of the static spin
susceptibility near z ∼ 1 is shown in Figure 1. One can
see that χyy has a discontinuous derivative at z = 1, while
the derivatives of χxx, χzz , and χzx are discontinuous at
z = 1 ∓ y. These anomalies are analogous to the Kohn
anomaly of the polarization operator [29,24,23] at z = 1.

Using (39–41) we can find a SO-modification of
the Ruderman-Kittel-Kasuya-Yosida (RKKY) Hamilto-
nian [26–28], which describes an indirect exchange interac-
tion between two localized magnetic impurities. In general
case the RKKY Hamiltonian reads [25]

HRKKY
1,2 = J2

RKKY

∑
α,β=x,y,z

Sα
1 χ

αβ(r12)S
β
2 , (43)

where S1,2 are the spin operators of impurities, and r12 =
r1 − r2 is the distance between them.

0.9 1 1.1 1.2 1.3

0.8
1

1.2
1.4
1.6
1.8

2

−
χα

α
ν

(z
,0

)/

0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

z

z
Fig. 1. Diagonal components of the static spin susceptibility
near z = q/2kF ∼ 1 plotted at y = kR/kF = 0.1. Solid, dashed-
dotted, and dashed lines correspond to α = x, α = y, and α =
z, respectively. The inset shows the off-diagonal component
−iχzx(z, 0)/ν.

In the presence of SO coupling the Hamiltonian (43)
becomes anisotropic in spin space, since the matrix χ is no
longer proportional to the unit matrix. Let us find asymp-
totic values of χαβ(r12) at large r12 � k−1

F . For simplicity
we assume that the vector r12 is aligned with x-direction
in the coordinate space. Inspecting (39–41) and restoring
the dimensional units, we establish the asymptotic form
of the right-sided derivatives

dχyy

dq

∣∣∣∣
q→q+

c0

≈ ν

2kF

√
2qc0
q − qc0

, (44)

dχzz

dq

∣∣∣∣
q→q+

cµ

≈ dχxx

dq

∣∣∣∣
q→q+

cµ

≈ ν

4kF

√
2qcµ

q − qcµ
, (45)

dχzx

dq

∣∣∣∣
q→q+

cµ

≈ iµν

4kF

√
2qcµ

q − qcµ
(46)

near the discontinuity points qc0 = 2kF and qcµ = 2kF −
2µkR. Performing the Fourier transformation of χαβ(q),
we obtain the following leading asymptotic terms

χyy(r12) ≈ − ν
π

sin(2kF r12)
r212

, (47)

χzz(r12) ≈ χxx(r12) ≈ − ν

2π

∑
µ=±

qcµ sin(qcµr12)
2kF r212

≈ − ν
π

sin(2kF r12)
r212

cos(2kRr12), (48)

χzx(r12) ≈ − ν

2π

∑
µ=±

µ
qcµ cos(qcµr12)

2kF r212

≈ − ν
π

sin(2kF r12)
r212

sin(2kRr12), (49)

which oscillate in the coordinate space with the periods
2π/qc0 and 2π/qcµ. Substituting them into equation (43),
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Fig. 2. SO-induced extension of the particle-hole excitation re-
gion at y = 0.1 – the light-gray area bounded by the parabolas
w1 ≡ w+ and w4 ≡ w−. The small darkened triangle inside it
indicates the range of applicability of the long-wavelength ap-
proximation. The dashed lines depict quasiclassical boundaries
wqc

± = y ± z.

we obtain

HRKKY
1,2 = F2(r12)

∑
α,β=x,y,z

Sα
1O

αβ(θ12)S
β
2 , (50)

where the range function

F2(r12) = −J2
RKKY

ν

π

sin(2kF r12)
r212

(51)

is the same as in the absence of SO coupling. The SO-
modification of the Hamiltonian (43) consists in the spin
twist determined by the orthogonal transformation

O(θ12) =

⎛
⎝ cos θ12 0 − sin θ12

0 1 0
sin θ12 0 cos θ12

⎞
⎠ (52)

with the rotation angle θ12 = 2kRr12. The expression (50)
is in agreement with the corresponding result of refer-
ence [25].

5 Behavior of the response functions
χαβ at small momenta

5.1 Exact expressions for Imχαβ in the SO-induced
particle-hole excitation region

It has been discussed in reference [23] that an account
of the Rashba SO coupling leads to an extension of the
boundaries of a particle-hole continuum, or Landau damp-
ing region, which is defined by Imχ(1) �= 0. It has been also
established that this extension has a shape of the wedge
bounded by the parabolas −(z − y)2 − (z − y) ≡ w4(z) <
w < w1(z) ≡ (z + y)2 + (z + y) [see Fig. 2].

0.05 0.1 0.15 w

0.2

0.4

0.6

0.8

1
m y

x

Fig. 3. Spin-galvanic function (54) at y = 0.1 and the values of
z = 0.0, 0.025, 0.005, 0.01, 0.02, 0.03, 0.04. In particular, the
solid line depicts the long-wavelength limit, and the dashed
curve corresponds to z = y2 = 0.01 ≈ z∗.

Since the representation (12–14) manifests the same
pole structure for all response functions, their imaginary
parts appear to be nonzero in the same domain where
Imχ(1) �= 0. Analyzing (125), we extract an explicit ex-
pression for Imχ(j) in the SO-induced particle-hole exci-
tation region

− 1
ν

Imχ(j) = −Θ(w2 − w)Θ(w − w4)A
(j)
2c (z − y)

−Θ(w1 − w)Θ(w − w2)A
(j)
2c (−t1)

+Θ(w3 − w)Θ(w − w4)A
(j)
2c (−t3), (53)

where w1,2 = (z±y)2±(z±y) and w3,4 = −(z±y)2±(z±y).
The functions A(j)

2c and the arguments t1 and t3 are defined
in equations (117), (127) and (128), respectively. On the
analogy of A(1)

2c explicitly quoted in reference [23], one can
as well express the rest A(j)

2c in terms of elliptic functions.
For example, in equations (118) and (119) we write down
explicit formulas for A(2)

2c and A(4)
2c , respectively.

Equation (53) allows us to study the behavior of the
density-density response functions at finite momenta. On
its basis we can also describe the spin-density response
ρy = 2My

xEx to a longitudinal electric field Ex = −e∂V 0

∂x

(or Ex = −iqV 0 in the momentum representation). The
spin-galvanic response function [31–33]My

x is then related
to χ0y via My

x = ie
2qχ

0y. Let us also introduce the rescaled
function

my
x = −16kR

eπν
ReMy

x ≡ 4y
πzν

Imχ0y. (54)

Using (118), we calculate and plot it in Figure 3 at fixed fi-
nite values of z. We remark that its frequency dependence
in the range w4 < w < w1 corresponding to intersubband
transitions is similar to that of the finite-q conductivity
studied in reference [23].

5.2 Long-wavelength limit

Spatially uniform spin susceptibilities of the 2DEG
with SO coupling have been previously considered in
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reference [15]. We recover the corresponding expressions
in the long-wavelength limit

− lim
z→0

χzz

ν
= −2 lim

z→0

χxx(yy)

ν
= 2 +

w

2y2
r(w), (55)

where

r(w) = ln
∣∣∣∣(w − y2)2 − y2

(w + y2)2 − y2

∣∣∣∣ + iπΘ(y2 − |w − y|). (56)

The small-q behavior of the polarization operator of
2DEG with Rashba SO coupling has been approximated
in references [6,13] by the expression

−χ
00

ν
≈ − z2

w2
+
z2

4w
r(w), (57)

which is obtained after the formal expansion of χ00 in a
series of z = q

2kF
� 1. Later on it has been remarked [23]

that the formula (57) is, in fact, reliable only for the values
z < z∗ ≈ y2, where z∗ is the point of intersection of the
parabolas w2(z) and w3(z) [see Fig. 2]. Analogously, we
can find approximate relations for the off-diagonal terms

− iχ
zx

ν
≈ zw

2y3

[
r(w) +

∑
µ=±

wy(µ− 2y)
y2(1 − µy)2 − w2

]
(58)

and

χ0y

ν
≈ z

4y

[
r(w) +

4y2

w

]
, (59)

which are also applicable in the small triangular region
located at z < z∗ and bounded by w3 < w < w2. In
particular, equation (59) accounts for the box-like shape
of the function my

x (54) in the linit z → 0 which can be
seen in Figure 3.

5.3 Quasiclassical approximation

On the basis of the exact result (53) we can also estimate
how accurate the quasiclassical approximation appears to
be, when it is applied to a description of the clean 2DEG
with Rashba SO coupling.

The quasiclassical approximation relies on the fact that
all energy scales in the system are much smaller than
the Fermi energy: qkF /m

∗, ω, αRkF � εF . This inequal-
ity enables one to treat (12–14) linearizing the branches
of the spectrum εµk near the corresponding Fermi points
kµ = kF −µkR and expanding Fαβ

k,k+q;µ,µ′ in a series of q.
We note that a more systematic procedure of making the
quasiclassical approximation is based on the gradient ex-
pansion of the quantum kinetic equation [6,7,9], which is
applicable in more general – nonequilibrium – situations.

Quasiclassical response functions χαβ of the disor-
dered 2DEG with Rashba SO coupling have been explic-
itly calculated in reference [11]. It has been also argued
therein that the quasiclassical approximation is justified
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Fig. 4. Comparison of the exact (solid line) and the quasi-
classical (dashed line) functions −Imχzz/ν at z = 0.04 and
y = 0.1. Vertical dotted lines correspond (from the left to
the right) to the frequency values w4, w2, w3, and w1. Ver-
tical dashed lines correspond to the values wqc

− = y − z and
wqc

+ = y + z demarcating the quasiclassical boundaries of the
SO-induced particle-hole excitation region.

in the presence of a finite amount of impurities such that
τ−1 > k2

R/m
∗. This condition confines τ−1 from below.

Had we ignored it, we would have obtained in the extreme
collisionless limit τ → ∞ the quasiclassical expression for,
say, out-of-plane component of the spin susceptibility in
the form

−1
ν
Imχzz

qc = w
∑
µ=±

Θ(z2 − (w − µy)2)√
z2 − (w − µy)2

, (60)

which is divergent near w = wqc
± ≡ |y ± z|.

The lines wqc
± represent the quasiclassical boundaries

of the SO-induced (intersubband) particle-hole excitation
region, and they differ from the actual parabolic ones
w+ ≡ w1 and w− ≡ w4. In Figure 2 wqc

± are depicted
by the dashed lines, and one can observe that wqc

+ lies
in between w1 and w3, and wqc

− lies in between w2 and
w4. It is also evident that in the quasiclassical approxi-
mation the finite basis y − y2 < w < y + y2 of the wedge
at z = 0 is not resolved. This means that the imaginary
part of a quasiclassical counterpart of r(w) (56) appears
to be delta-peaked, and therefore the corresponding finite-
valued results of Section 5.2 can not be reproduced in the
quasiclassical approximation.

It can be anticipated that the quasiclassical approxi-
mation is still reliable in the triangular area w2 < w < w3

at z > z∗ ≈ y2. In Figure 4 we confirm this surmise com-
paring the function (60) with the exact expression calcu-
lated on the basis of equations (53) and (119).

Thus, we conclude that the long-wavelength and the
quasiclassical approximations do not have any correspon-
dence between each other, since they are applicable in the
domains which do not overlap, i.e. at z < z∗ and z > z∗,
respectively.
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6 Collective charge and spin density
excitations

Let us now consider the renormalization of the matrix χ
due to electron-electron interaction. Treating the latter in
the Hubbard approximation [29], we take into account
screening and exchange effects. An effective response ma-
trix χ̃ [see Eq. (100)] is derived in Appendix A using the
method of the equations of motion [29].

In the basis specified by the condition q||ex the matrix
χ can be decomposed into two 2 × 2-blocks

χ(0y) =
(
χ00 χ0y

χy0 χyy

)
, χ(xz) =

(
χxx χxz

χzx χzz

)
. (61)

It follows from (100) that the spin-charge χ(0y) and the
spin-spin χ(xz) blocks are renormalized independently of
each other. In particular,

χ̃(0y) =
(
1 − χ(0y)F(0y)

)−1
χ(0y), (62)

χ̃(xz) =
(
1 + Jχ(xz)

)−1
χ(xz), (63)

where F(0y) = diag{vq−J,−J} ≈ diag{vq,−J}, vq = 2πe2

q

is the Coulomb interaction, and J = πe2

kF
is the Hubbard’s

vertex exchange term at small q � kF .
Let us first consider the spin-charge block and find the

renormalized response functions

χ̃00 =
χ00 + J∆̄(0y)

∆(0y)
, (64)

χ̃yy =
χyy − vq∆̄(0y)

∆(0y)
, (65)

χ̃0y =
χ0y

∆(0y)
, (66)

where

∆̄(0y) = detχ(0y) = χ00χyy − (
χ0y

)2
, (67)

∆(0y) = det
(
1 − χ(0y)F(0y)

)
≈ (

1 − vqχ
00

)
(1 + Jχyy) + Jvq

(
χ0y

)2
. (68)

For the spin-spin block we have

χ̃xx =
χxx + J∆̄(zx)

∆(zx)
, (69)

χ̃zz =
χzz + J∆̄(zx)

∆(zx)
, (70)

χ̃xz =
χxz

∆(xz)
, (71)

where

∆̄(xz) = detχ(zx) = χxxχzz + (χxz)2 , (72)

∆(xz) = det
(
1 + Jχ(xz)

)
= (1 + Jχxx) (1 + Jχzz) + J2 (χxz)2 . (73)

Dispersions of the collective charge and spin density
excitations are determined from the equations ∆(0y) = 0
and ∆(xz) = 0, and the response functions χ̃αβ are
strongly enhanced at the parameter values satisfying these
conditions.

Before quantifying χ̃αβ , let us qualitatively discuss the
role of the spin-charge mixing term χ0y as well as the role
of the exchange corrections. Note that if either χ0y = 0 or
J = 0, the dynamics of the charge and the spin-y densities
becomes decoupled, and the corresponding plasmon and
SDEy (spin-y density excitation) modes are independently
found from the conditions 1−vqχ

00 = 0 and 1+Jχyy = 0
(the latter equation makes sense at J �= 0 only). The
role of χ0y, whatever small it might be, is considerably
strengthened when the dispersions of the plasmon and
the SDEy modes come close to a degeneracy point. In
fact, χ0y �= 0 lifts this degeneracy, thus making a possible
crossing of these modes avoidable. Therefore, we expect
that an account of the spin-charge mixing along with the
exchange interaction would lead to nontrivial features in
profiles of χ̃00 and χ̃yy near the avoided intersection. It
is also implied that the peaks corresponding to the both
collective modes would appear in every response function
of the spin-charge block. In particular, the spin suscepti-
bility χ̃yy is expected to manifest resonant features at the
position of the plasmon dispersion, while χ̃00 should have
a peak corresponding to the SDEy mode.

We remark that the decoupled plasmon mode in 2DEG
with Rashba SO coupling has been previously considered
in references [19–23] in the random phase approximation
(RPA), i.e. at J = 0. In turn, the coupled spin-x – spin-z
collective modes, which are determined by ∆(xz) = 0, oc-
cur at J �= 0, i.e. their description requires an extension
of the RPA. Their dispersions, as well as the dispersion
of the decoupled spin-y mode (at neglected spin-charge
mixing χ0y = 0), have been previously considered in ref-
erence [17] in terms of the Hubbard’s approximation with
the bare spin susceptibilities calculated in the quasiclassi-
cal approximation (see Sect. 5.3).

Using our exact expressions for χαβ , we are able to
study dispersions of the collective charge and spin density
modes in more detail. They can be visualized, for example,
in contour plots of the response functions χ̃αβ . Absolute
values of χ̃αβ providing a useful information for inelastic
Raman scattering [34] are available as well.

Let us first evaluate the renormalized response func-
tions (69–71) which constitute the spin-spin block χ̃(xz).
In Figure 5 we present the contour plot of −Imχ̃xx/ν at
y = 0.1 and the Wigner-Seitz parameter rs ≡

√
2m∗e2

kF
=

0.6 (note that J = rs

2
√

2ν
). One can observe the disper-

sions of the two coupled spin-x – spin-z collective modes.
We state that their spectra are in the qualitative agree-
ment with those previously predicted in reference [17] on
the basis of the quasiclassical approximation. However,
the absolute values of χ̃αβ differ from their quasiclassical
counterparts χ̃αβ

qc . The reason is the same as discussed in
Section 5.3 for the case of bare susceptiblities.

In turn, the response functions (64–66) of the spin-
charge block χ̃(0y) manifest novel qualitative features due
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Fig. 5. Contour plot of −Imχ̃xx(z, w)/ν. Parameters: y = 0.1
and rs = 0.6.

to the account of the spin-charge mixing χ0y along with
the exchange interaction. In Figure 6 we present the con-
tour plot of the function −Imχ̃yy/ν at y = 0.1 and rs = 0.6
(note that vq = rs

2
√

2zν
). It also contains the two collec-

tive modes: plasmon-like and SDEy-like. The plasmon-
like mode has almost the same dispersion w ≈

√
rsz
2
√

2
as

the plasmon mode in the absence of SO coupling. The
SDEy-like mode originates at z = 0 from the finite fre-
quency value slightly below the bottom of the wedge. Be-
ing undamped, these modes do not come close to each
other. They collide soon after the plasmon-like mode en-
ters into the SO-induced damping region, i.e. at z ≥ 0.023.
In the vicinity of this point the spin-charge mixing χ0y

acquires its importance. Although a pictorial description
of the avoided crossing loses its obviousness because of
the modes’ broadening, we prove that it does happen.
For this purpose we plot in Figure 7 the cross-section of
−Imχ̃yy/ν at z = 0.027. Thereby we show that instead
of the only SDEy peak (dashed line) occurring at inten-
tionally neglected χ0y = 0, we obtain at χ0y �= 0 the
two well-resolved peaks (solid line) corresponding to the
plasmon-like and the SDEy-like modes. A formation of the
dip between them is interpreted as an avoided crossing
of the two broadened modes. A relevance of such inter-
pretation becomes even more evident, if one would com-
pare several subsequent cross sections of −Imχ̃yy/ν and
−Imχ̃00/ν.

As one can see from equation (66), the spin-charge
mixing term is renormalized by electron-electron interac-
tion as well. Let us define the function

m̃y
x =

4y
πzν

Imχ̃0y, (74)

which is an interacting counterpart of the bare spin-
galvanic function my

x (54). In Figure 8 we compare both
of them at z = 0.01 and y = 0.1 in the frequency window
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Fig. 6. Contour plot of −Imχ̃yy(z, w)/ν. Parameters: y = 0.1
and rs = 0.6.
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Fig. 7. The cross section of −Imχ̃yy(z, w)/ν at z = 0.027 (solid
line). The dashed line corresponds to the case of intentionally
neglected spin-charge mixing term χ0y . Parameters: y = 0.1
and rs = 0.6.
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Fig. 8. The renormalized spin-galvanic function (74) at z =
0.01 and the parameters y = 0.1 and rs = 0.6 (solid line). The
dashed line depicts its non-interacting counterpart (rs = 0)
given by (54).
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y − 2y2 < w < y + 2y2. We observe that at these pa-
rameters the major effect of renormalization consists in
a considerable amplification of the spin-galvanic function
(74) due to the exchange interaction.

7 Summary

We have derived zero-temperature analytic expressions
for the charge and spin density response functions of the
clean 2DEG with Rashba SO coupling at finite momenta
and frequencies. We have studied their static and long-
wavelength limits as well as established the applicability
range of the quasiclassical approximation. In the static
limit we have observed the Kohn-like anomalies in the
spin susceptibilities and showed how they are related to
the SO modification of the RKKY interaction.

The renormalization of the response functions due to
electron-electron interaction has been considered in the
Hubbard’s approximation. We have studied the collective
charge and spin density modes which appear to be cou-
pled due to the nonvanishing spin-charge mixing term χ0y.
One of the important consequences of this coupling is the
emergence of the plasmon-like peak in the spectrum of the
renormalized spin susceptibility.

We are grateful to Gerd Schön for useful discussions. M.P.
acknowledges the financial support from the Deutsche For-
schungsgemeinschaft (DFG).

Appendix A: Equations of motion

Let us define the local charge (α = 0) and spin (α =
x, y, z) density operators

ρ̂α
q =

∑
k

ρ̂α
kq, ρ̂α

kq = c†kσ
αck+q, (75)

and derive the equations of motion [29] for the expectation
values ρα

kq = 〈ρ̂α
kq〉. In the Fourier representation they

read
ωρα

kq = 〈[ρ̂α
kq, H ]〉. (76)

The full Hamiltonian H = H0 +Hext consists of the parts
describing a system

H0 =
∑
k′,β

Eβ
k′ ρ̂

β
k′,0 (77)

and an external perturbation

Hext =
1
V

∑
q′,β

V β
q′ ρ̂

β
−q′ , (78)

where V is the spatial volume. For the Rashba system (1)
we have Eβ

k = (εk, αRky,−αRkx, 0). Later on we will also
add the interaction term Hint to the Hamiltonian H .

Using the identity

[ρ̂α
kq, ρ̂

β
k′,0] = c†kσ

ασβck′δk+q,k′ − c†k′σ
βσαck+qδkk′ (79)

we find

〈[ρ̂α
kq, H0]〉 =

∑
β

Eβ
k+q〈c†kσασβck+q〉

−
∑

β

Eβ
k 〈c†kσβσαck+q〉. (80)

It is convenient to introduce the representation

ωρα
kq − 〈[ρ̂α

kq, H0]〉 =
∑

β

Aαβ
kqρ

β
kq (81)

in terms of the matrix A with the elements

Aαα
kq = ω + εk − εk+q,

Ax0
kq = A0x

kq = −αRqy,

Ay0
kq = A0y

kq = αRqx,

Axz
kq = −Azx

kq = iαR(2kx + qx),

Ayz
kq = −Azy

kq = iαR(2ky + qy),

A0z
kq = Az0

kq = Axy
kq = Ayx

kq = 0. (82)

In order to find the commutator of ρ̂α
kq with Hext (78),

we use the identity

[ρ̂α
kq, ρ̂

β
−q′ ] = c†kσ

ασβck+q−q′ − c†k+q′σ
βσαck+q. (83)

From the whole sum over q′ in (78) we pick out the only
term q′ = q. This is known as the random phase approx-
imation (RPA). Then,

[ρ̂α
kq, Hext] ≈ 1

V
∑

β

V β
q

(
c†kσ

ασβck − c†k+qσ
βσαck+q

)
,

(84)
and after averaging we obtain

〈[ρ̂α
kq, Hext]〉 ≈ 1

V
∑

β

Bαβ
kqV

β
q , (85)

where

Bαβ
kq = 〈c†kσασβck − c†k+qσ

βσαck+q〉. (86)

In order to fulfil the averaging, we have to transform
ck = Ukγk into the diagonal basis γk± such that

〈γ†kµγkµ′〉 = δµµ′fµ
k . (87)

The transformation matrix Uk is defined in equation (4).
Since the external perturbation is assumed to be small,
we average in (87) with respect to the system’s density
matrix. Therefore we can identify fµ

k ≡ nF (εµk).



M. Pletyukhov and S. Konschuh: Response functions of the clean 2DEG with Rashba spin-orbit coupling 39

The components (86) are then found to be

Bαβ
kq =

1
2

∑
µ

fµ
k Tr

[
(1 + µσz)U†

kσ
ασβUk

]

− 1
2

∑
µ

fµ
k+qTr

[
(1 + µσz)U†

k+qσ
βσαUk+q

]

=
1
2

∑
µ

fµ
k Tr

[
(1 + µhR

k )σασβ
]

− 1
2

∑
µ

fµ
k+qTr

[
(1 + µhR

k+q)σβσα
]
, (88)

or, more explicitly,

Bαα
kq =

∑
µ

(
fµ
k − fµ

k+q

)
,

Bx0
kq = B0x

kq =
∑

µ

µ
(
fµ
k sinφk − fµ

k+q sinφk+q

)
,

By0
kq = B0y

kq = −
∑

µ

µ
(
fµ
k cosφk − fµ

k+q cosφk+q

)
,

Bxz
kq = −Bzx

kq = i
∑

µ

µ
(
fµ
k cosφk + fµ

k+q cosφk+q

)
,

Byz
kq = −Bzy

kq = i
∑

µ

µ
(
fµ
k sinφk + fµ

k+q sinφk+q

)
,

B0z
kq = Bz0

kq = Bxy
kq = Byx

kq = 0. (89)

Combining (81) and (85), we derive the following ma-
trix equation

Akqρkq =
1
V BkqVq, (90)

where the upper indices are omitted for brevity. Inverting
the matrix Akq and summing over k, we obtain ρq ≡
〈ρ̂q〉 = χVq, where

χ =
1
V

∑
k

A−1
kqBkq (91)

is a density response matrix of the non-interacting system.
After the straightforward calculation, we recover from (91)
the expression (7) for the components of χ.

Let us now take into account electron-electron inter-
action

Hint =
1

2V
∑

p′k′q′

∑
σs

vq′c†p′+q′,σc
†
k′−q′,sck′scp′σ. (92)

In the mean field approximation we obtain

〈[ρ̂α
kq, Hint]〉 =

1
V

∑
q′
vq′ρ0

q′ ×

×
{
〈c†kσαck+q−q′〉 − 〈c†k+q′σ

αck+q〉
}

+
1

2V
∑

q′,p′,β

vq′
{
〈c†k+q′σ

βcp′〉〈c†p′−q′σ
βσαck+q〉

−〈c†kσασβcp′〉〈c†p′+q′σ
βck+q+q′〉

}
. (93)

The first sum in (93) corresponds to the direct
Coulomb term. We treat it further in the RPA picking
the only term q′ = q out of the whole sum. We obtain the
following contribution

〈[ρ̂α
kq, Hint]〉RPA = (94)

=
vqρ

0
q

V
{
〈c†kσαck〉 − 〈c†k+qσ

αck+q〉
}

=
vqρ

0
q

V Bα0
kq,

which accounts for the effect of screening.
From the second sum in (93) we can extract the ex-

change self-energy term and the Hubbard’s exchange cor-
rection to the RPA.

A contribution associated with the self-energy is ob-
tained from (93) after picking out the summands with
p′ = k + q′ and p′ = k + q, i.e.

〈[ρ̂α
kq, Hint]〉Σ =

=
1

2V
∑
q′,β

vq′
{
〈c†k+q′σ

βck+q′〉〈c†kσβσαck+q〉

−〈c†kσασβck+q〉〈c†k+q+q′σ
βck+q+q′〉

}
(95)

= −
∑

β

{
Σβ

k〈c†kσβσαck+q〉 −Σβ
k+q〈c†kσασβck+q〉

}
,

where

Σβ
k = − 1

2V
∑
q′
vq′−kρ

β
q′0

= − 1
4V

∑
q′,µ′

vq′−kf
µ′
q′ Tr[(1 + µ′hR

q′)σβ ]. (96)

The self-energy Σβ
k modifies the single-particle Hamilto-

nian Eβ
k → Eβ

k +Σβ
k . After diagonalization we obtain the

renormalized eigenvalues εµk → εµk +Σµ
k ,

Σµ
k = − 1

2V
∑
q′,µ′

vq′−kf
µ′
q′ [1 + µµ′ cos(φk − φq′)], (97)

which correspond to the same eigenstates (3). Besides the
shift of a chemical potential, the spectrum renormalization
results in an effective value of the Rashba splitting, which
has been previously studied in reference [35]. In our con-
sideration we will, however, neglect this effect and discard
the contribution (95).

The Hubbard’s exchange term is given by the sum-
mands in (93) with p′ = k + q + q′ and p′ = k, i.e.

〈[ρ̂α
kq, Hint]〉Hub =
1

2V
∑
q′,β

vq′
{
〈c†k+q′σ

βck+q+q′〉〈c†k+qσ
βσαck+q〉

−〈c†kσασβck〉〈c†k+q′σ
βck+q+q′〉

}

= − 1
2V

∑
k′,β

vk′−kBαβ
kqρ

β
k′q

≈ − v̄q
2V

∑
k′,β

Bαβ
kqρ

β
k′q = − v̄q

2V
∑

β

Bαβ
kqρ

β
q, (98)
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where v̄q is approximately regarded at small q as a con-
stant ≡ 2J = 2πe2

kF
.

Collecting the contributions (94) and (98) and adding
them to (90), we obtain the equation

Akqρkq =
1
V Bkq (Vq + Fρq) (99)

where F = diag{vq − J,−J,−J,−J}. Solving it, we find
that ρq = χ̃Vq, where

χ̃ = (1 − χF )−1χ (100)

is a density response matrix of the interacting system in
the Hubbard’s approximation.

Appendix B: Explicit expressions
for the functions χ(j)

Let us list the functions f̌ (j)
i , C(j)

i and δ
(j)
i which deter-

mine the response functions χ(j) in equations (18) and
(19):

f̌
(1)
i = 0, C

(1)
i =

v − µy

2v2z
,

δ
(1)
i =

(z2 − λw) − µyv

(v − µy)z
; (101)

f̌
(2)
i =

λ(µ− y)
2z

, C
(2)
i =

µλ(λw + βizv + µyv − z2)
2v2z2

,

δ
(2)
i =

(γiv + µy)z
λw + βizv + µyv − z2

; (102)

f̌
(3)
i =

y(y − µ)
2z2

, C
(3)
i =

vz − µyz + βiµyv

2v2z2
,

δ
(3)
i =

z2 − λw + γiµyv

vz − µyz + βiµyv
; (103)

f̌
(4)
i = 0, C

(4)
i =

v + µy

2v2z
,

δ
(4)
i =

z2 − λw

(v + µy)z
; (104)

f̌
(5)
i =

µ− y

2z
, C

(5)
i = −µ(λw + βizv − z2)

2v2z2
,

δ
(5)
i =

(γiv − µy)z
λw + βizv − z2

. (105)

Employing (101–105) in the framework of the computa-
tional scheme elaborated in reference [23], one can derive
equations (23) and (24).

The actual limits of integration in the latter expres-
sions require further detailing, since the corresponding
integrands L(j)(τ) (29) and R(j)(τ) (30) are defined at
P (τ) > 0 and P (τ) < 0, respectively. The polynomial
P (τ) (31) has the roots τk (25), which can be ordered
differently depending on the values of w, z, and y.

Fig. 9. The domains A, B, C, and D corresponding to the
different orderings (106–109) of the roots τk (25).

We identify the domains A, B, C, and D in the plane
(z, w) [see Fig. 9] such that

A : τ4 < τ2 < τ1 < τ3, (106)
B : τ4 < τ2 < τ3 < τ1, (107)
C : τ2 < τ4 < τ3 < τ1, (108)
D : τ4 < τ3 < τ2 < τ1. (109)

We also define the unit-step functions Θ(A) = Θ(z2−yz−
w), Θ(B) = Θ(w− z2 + yz)Θ(z2 + yz−w)Θ(w+ z2− yz),
Θ(C) = Θ(w − z2 − yz), and Θ(D) = (yz − z2 − w),
which realize projections onto these domains. Using these
definitions we make the following decomposition

χ(j) = χ̌(j) +Θ(A)χ(j)
a +Θ(B)χ(j)

b

+Θ(C)χ(j)
c +Θ(D)χ(j)

d , (110)

where χ̌(j) is nonzero only for j = 3 and j = 5:

χ̌(3) = −2νy2/z2, χ̌(5) = 2νy/z. (111)

Inside of each domain the root’s ordering is fixed,
and one has to find out how τσλ(. . .) occurring in equa-
tions (23) and (24) are arranged among τ1, . . . , τ4.

Let us introduce x4 < x3 < x2 < x1, where xk’s are
identified with τk’s differently in each domain according
to (106–109), and define the primitives for the imaginary

A
(j)+
1 (x) =

∫ x

x1

dx′L(j)(x′), x1 < x, (112)

A
(j)
2 (x) =

∫ x

x3

dx′L(j)(x′), x3 < x < x2, (113)

A
(j)−
1 (x) = −

∫ x4

x

dx′L(j)(x′), x < x4, (114)

and the real parts

B
(j)
1 (x) =

∫ x

x2

dx′R(j)(x′), x2 < x < x1, (115)

B
(j)
2 (x) =

∫ x

x4

dx′R(j)(x′), x4 < x < x3. (116)

They have to be further detailed in each domain as well.
For example, in the domain C we have x3 = τ4 ≡ −z − y,
and therefore

A
(j)
2 (x) → A

(j)
2c (x) =

∫ x

−z−y

dx′L(j)(x′). (117)
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After such a specification the primitives (112–116) can
be explicitly found in terms of elliptic functions (see Ap-
pendix C of Ref. [23]). In particular, we quote the A(j)

2c
expressions for j = 2 and j = 4:

A
(2)
2c (x) = −kc[(w/z − y)2 − z2]

4zw
√
w

{2wF (ϕ2c(x), kc)

− (w/z)2n2cΠ(ϕ2c(x), n2c, kc)

− (z2 − y2)ñ2cΠ(ϕ2c(x), ñ2c, kc)
}
, (118)

A
(4)
2c (x) =

w

2(z2 − y2)x

√
zx− w

zx+ w
[(x+ y)2 − z2]

− kc((w/z − y)2 − z2)
4
√
w(z2 − y2)

{zF (ϕ2c(x), kc)

− yñ2cΠ(ϕ2c(x), ñ2c, kc)}

+
z
√
w

kc(z2 − y2)
E(ϕ2c(x), kc), (119)

where

ϕ2c(x) = arcsin

√
(x+ y + z)(w/z − y + z)

2(zx+ w)
, (120)

kc =
2
√
w√

(z + w/z)2 − y2
, (121)

n2c =
2z

w/z + z − y
, ñ2c =

w

z(z + y)
n2c. (122)

Let us now establish the actual limits of integration in
equation (23). Rewriting it in terms of (112–114), we ob-
tain Imχ(j) in every domain

− 1
ν

Imχ(j)
a = −Θ(w

z − t1)
[
A

(j)
2a (w

z ) −∑
µ=± µA

(j)
2a (µt1)

]

+
∑
µ=±

µΘ(t2 − z + µy)A(j)µ
1a (µt2) −Θ(1 − 4w) ×

×
{∑

µ=±
µΘ(t4 − z + µy)A(j)µ

1a (µt4) −Θ(t3 − z + y)×

× A
(j)+
1a (t3)−Θ(w

z − t3)
[
A

(j)
2a (w

z ) −∑
µ=± µA

(j)
2a (µt3)

]}
,

(123)

− 1
ν

Imχ(j)
b = −Θ(z − y − t1)

[
A

(j)
2b (z − y) − A

(j)
2b (t1)

]

− Θ(z − y + t1)A
(j)
2b (−t1) −Θ(y − z − t1)A

(j)
2b (z − y)

− Θ(t2 − z − y)A(j)−
1b (−t2) +A

(j)+
1b (t2) −Θ(1 − 4w)

×
{
−Θ(t4 − z − y)A(j)−

1b (−t4) +Θ(t4 − w
z )A(j)+

1b (t4)

− Θ(t3 − w
z )A(j)+

1b (t3)

− Θ(z − y − t3)
[
A

(j)
2b (z − y) −A

(j)
2b (t3)

]

+ Θ(w
z − t3)Θ(z − y + t3)

[
A

(j)
2b (z − y) −A

(j)
2b (−t3)

]

− Θ(w
z − t4)

[
A

(j)
2b (z − y) −A

(j)
2b (−t4)

]

− Θ(t4 − w
z )Θ(w

z − t3)A
(j)
2b (z − y)

}
, (124)

− 1
ν

Imχ(j)
c = Θ(t2 − w

z )
∑

µ=± µA
(j)µ
1c (µt2)

− Θ(z − y − t1)
[
A

(j)
2c (z − y) −A

(j)
2c (t1)

]

− Θ(z − |y − t1|)A(j)
2c (−t1) −Θ(y − z − t1)A

(j)
2c (z − y)

− Θ(1 − 4w)
{
Θ(t4 − w

z )
∑

µ=± µA
(j)µ
1c (µt4)

− Θ(z − y − t3)
[
A

(j)
2c (z − y) −A

(j)
2c (t3)

]

+ Θ(z − |y − t3|)
[
A

(j)
2c (z − y) −A

(j)
2c (−t3)

]

− Θ(z − |y − t4|)
[
A

(j)
2c (z − y) −A

(j)
2c (−t4)

]

− Θ(t4 − z − y)Θ(z + y − t3)A
(j)
2c (z − y)

}
, (125)

−1
ν

Imχ(j)
d =

∑
µ=±

µ
[
A

(j)µ
1d (µt2) −A

(j)µ
1d (µt4)

]
. (126)

In the above expressions we have used the definitions

t1,2 =
1
2
[√

1 + 4w ∓ 1
]
, (127)

t3,4 =
1
2
[
1 ∓√

1 − 4w
]
. (128)

The actual limits of integration for the real part (24)
can be found in a similar way. However, equation (24)
accounts only the term Reχ(j),I . Complementing it by
Reχ(j),II [see the remark 5) in the end of Sect. 3], we
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present the sum of the both terms in every domain

− 1
ν

Reχ(j)
a = Θ(t1 − w

z )B(j)
1a (t1) − 2B(j)

1a (t̃1)

+ Θ(t2 − z + y)B(j)
1a (z − y) +Θ(z − y − t2)B

(j)
1a (t2)

− [2 +Θ(w
z − t1)]B

(j)
2a (−w

z ) −Θ(t1 − w
z )B(j)

2a (−t1)
+ 2B(j)

2a (−t̃2) −Θ(z + y − t2)B
(j)
2a (−t2)

+ 2Θ(y2 − 4w)
[
B

(j)
2a (t̃3) +B

(j)
2a (t̃4)

]

+ 2Θ(4w − y2)
[
B

(j)
2a (t̃c3) +B

(j)
2a (t̃c4)

]

+ Θ(1 − 4w)
{
Θ(t3 − w

z )Θ(z − y − t3)B
(j)
1a (t3)

+ [Θ(t3 − z + y) +Θ(t4 − z + y)]B(j)
1a (z − y)

+ Θ(z − y − t4)B
(j)
1a (t4) −Θ(z + y − t4)B

(j)
2a (−t4)

− Θ(t3 − w
z )B(j)

2a (−t3) −Θ(w
z − t3)B

(j)
2a (−w

z )
}

+ Θ(4w − 1)
{
B

(j)
1a (tc3) +B

(j)
1a (tc4) −B

(j)
2a (−tc3)

− B
(j)
2a (−tc4)

}
+ s

(j)
1

π
√
z2 − y2

z
+ s̃

(j)
1

πw

z
√
z2 − y2

− 2s(j)3

[
B

(j)
1a (z − y) −B

(j)
2a (−w

z )
]
, (129)

− 1
ν

Reχ(j)
b = −B(j)

1b (w
z ) + 2B(j)

1b (t̃1)

− Θ(t1 − z + y)B(j)
1b (t1) −Θ(y − z − t1)B

(j)
1b (−t1)

− Θ(z + y − t2)B
(j)
2b (−t2) + 2B(j)

2b (−t̃2)
− Θ(w

z − t1)B
(j)
2b (−w

z ) −Θ(t1 − w
z )B(j)

2b (−t1)
− 2Θ(y2 − 4w)Θ(w − z2)

[
B

(j)
1b (t̃3) +B

(j)
1b (t̃4)

]

+ 2Θ(y2 − 4w)Θ(z2 − w)
[
B

(j)
2b (t̃3) +B

(j)
2b (t̃4)

− 2B(j)
2b (−w

z )
]
− 2Θ(4w − y2)

[
B

(j)
1b (t̃c3) + B

(j)
1b (t̃c4)

]

+ Θ(1 − 4w)
{

[Θ(t3 − w
z ) +Θ(t4 − w

z )]B(j)
1b (w

z )

+ Θ(w
z − t3)Θ(t3 − z + y)B(j)

1b (t3) +Θ(w
z − t4)B

(j)
1b (t4)

+ [Θ(t3 − w
z ) +Θ(t4 − w

z )]B(j)
2b (−w

z )

− Θ(z + y − t4)Θ(t4 − w
z )B(j)

2b (−t4)
+ Θ(y − z − t3)B

(j)
1b (−t3) −Θ(t3 − w

z )B(j)
2b (−t3)

}

+ Θ(4w − 1)
{
B

(j)
1b (tc3) +B

(j)
1b (tc4) +B

(j)
1b (−tc3)

+ B
(j)
1b (−tc4)

}
+Θ(1 − 4w)Θ(y − z)

×
(
s
(j)
1

πw

z2
+ s̃

(j)
1 π − 2s(j)2

[
B

(j)
1b (w

z ) −B
(j)
2b (−w

z )
])

− [
Θ(1 − 4w)Θ(4w − y2) −Θ(y2 − 4w)

]
Θ(z − y)

×
(
s
(j)
1

π
√
z2 − y2

z
+ s̃

(j)
1

πw

z
√
z2 − y2

− 2s(j)3

[
B

(j)
1b (w

z ) −B
(j)
2b (−w

z )
])
, (130)

− 1
ν

Reχ(j)
c = 2B(j)

1c (t̃1) −Θ(t2 − w
z )B(j)

1c (w
z )

− Θ(w
z − t2)B

(j)
1c (t2) −Θ(t1 − z + y)B(j)

1c (t1)

− Θ(y − z − t1)B
(j)
1c (−t1) +Θ(z + y − t1)B

(j)
2c (−z − y)

+ Θ(t1 − z − y)B(j)
2c (−t1) +Θ(w

z − t2)B
(j)
2c (−t2)

− 2B(j)
2c (−t̃2) − 2Θ(y2 − 4w)

[
B

(j)
1c (t̃3) +B

(j)
1c (t̃4)

]

− 2Θ(4w − y2)
[
B

(j)
1c (t̃c3) +B

(j)
1c (t̃c4)

]
+Θ(1 − 4w)

×
{
Θ(t4 − w

z )B(j)
1c (w

z ) +Θ(w
z − t4)B

(j)
1c (t4)

+ Θ(t3 − z + y)B(j)
1c (t3) + Θ(y − z − t3)B

(j)
1c (−t3)

+ [Θ(t4 − z − y) +Θ(t3 − z − y)]B(j)
2c (−z − y)

− Θ(w
z − t4)Θ(t4 − z − y)B(j)

2c (−t4)
− Θ(t3 − z − y)B(j)

2c (−t3)
}

+Θ(4w − 1)
{
B

(j)
1c (tc3)

+ B
(j)
1c (tc4) +B

(j)
1c (−tc3) +B

(j)
1c (−tc4)

}

+ Θ(1 − 4w)Θ(y − z)
(
s
(j)
1

πw

z2
+ s̃

(j)
1 π

− 2s(j)2

[
B

(j)
1c (w

z ) −B
(j)
2c (−z − y)

])

− Θ(1 − 4w)Θ(z − y)

(
s
(j)
1

π
√
z2 − y2

z
+ s̃

(j)
1

πw

z
√
z2 − y2

− 2s(j)3

[
B

(j)
1c (w

z ) −B
(j)
2c (−z − y)

])
, (131)

− 1
ν

Reχ(j)
d = 2B(j)

1d (t̃1) −
∑
µ=±

[
B

(j)
1d (µt1) −B

(j)
1d (µt3)

]

− 2B(j)
2d (z − y) + 2B(j)

2d (−t̃2) − 2B(j)
1d (t̃4) + 2B(j)

2d (t̃3)

+ s
(j)
1

πw

z2
+ s̃

(j)
1 π − 2s(j)2

[
B

(j)
1d (w

z )−B(j)
2d (z−y)

]
. (132)

In these expressions we have used along with (127)
and (128) the following arguments

t̃1,2 =
1
2

[√
y2 + 4w ∓ y

]
, (133)

t̃3,4 =
1
2

[
−y ∓

√
y2 − 4w

]
, (134)

tc3,4 =
1
2
[1 ∓ i

√
4w − 1], (135)

t̃c3,4 =
1
2
[−y ∓ i

√
4w − y2]. (136)

Note that tc3,4 and t̃c3,4 are complex-valued, which assumes
the analytic continuation of elliptic functions hinted in
Appendix B of reference [23].

Transforming Reχ(j),II into the representation in
terms of B(j)

1 and B
(j)
2 , we accumulate the residue terms

which are different for each response function. They are
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fully defined by the following sets of constants

s
(1)
1 = s̃

(1)
1 = s

(1)
2 = s

(1)
3 = 0, (137)

s
(2)
1 = s

(2)
2 = 1, s̃

(2)
1 = s

(2)
3 = 0, (138)

s
(3,4)
2 = s

(3,4)
3 = 1, s

(3,4)
1 = s̃

(3,4)
1 = 0, (139)

s̃
(5)
1 = s

(5)
2 = 1, s

(5)
1 = s

(5)
3 = 0. (140)

We recall once again that for j = 3 and j = 5 equa-
tions (129–132) must be complemented by χ̌(j) (111).
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